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RESEARCH MEMORANDUM

THE PRESSURE-RECCOVERY AND PROPELLER—FQORCE CHARACTERTISTICS
OF A PROFELLER—SPINNER—-COWLING COMBINATION EMPLOYING
NACA L4—(5)(05)—037 SIX— AND EIGET-BIADE DUAL—
ROTATION PROPELLERS WITH AN
NACA 1-SERIES D-TYPE COWL

By Robert I. Sammonds and Robert M. Reynolds

SUMMARY

An investigation hes been conducted to determine the effect of both
six— and eight—blade dual—rotation propellers on the internal-flow char—
acteristics of en NACA l—series D—type cowl, and the effect of the cowl
on the characteristics of the propellers. The pressure recoveries at
the cowl inlet and the charsacteristics of the propellers were mesasured
at Mach numbers from 0.13 to 0.81|-, inlet velocity ratlos from 0.27 to
1.08, advance ratlos fram 0.80 to T7.29, and propeller blade anglies from
40O to T0°. Included are results of surveys, with the propellers removed,
of the local veloclty distributions ahead of the cowl, measured in the
planes of both the front and rear components of the dual—rotation pro—
peller, for an NACA 1-46.5-085 spinner, and in the plane of a single—
rotation propeller, for the shorter NACA 1-46.5-047 spinner. All tests
of the dual~rotation propeller—spinner—cowling combinastion were conducted
with the model at an angle of attack of O° and at a Reynolds number of
1.0 million per foot (1.3 million based on the mAximum cowl dismeter).

With the propeller removed, the ram—recovery ratios for the spinner—
cowling combination were greater than 0.96 et inlet velocity ratios above
0.51 and were not affected by compressibility.

Operation of elther the six— or eight—-blade dual-xrotatlion propeller
ahead of the cowl, at maximum efficlency for & given blade angle, resulted
in lower recoveries than those for the cowling with the propeller removed.
Also, pressure recoveries for the six—blade propeller-spinner—cowling
combination were higher than those for the cowl with the eight—blade pro—
peller, although the recoveries for the cowl with elther dual—rotation
propeller were lower than those for a sinmilar cowl with a four—blade
single—rotation propeller.
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At the design Mach number of 0.80, inlet velocity ratio of 0.50, and
advance ratio of 4.2 and the near—design blade angle of 65°, the maximum
efficiencies for the six— and eight—blade dual-rotation propellers with
the cowl were T5 and 76 percent, respectively.

The maximum efficiencies of the six— and eight—blede dual—rotation
propellers when operating in the presence of the cowl were higher, at all
comperable conditlons, than those for the isolated dusl—rotation propeller—
spinner combinations.

The effect of Inlet wveloclty ratioc on the propeller cherecteristics
was small.

INTRODUCTION

The successful application of the turblne—propsller—type power
plant is dependent, in part, on the combined efficiency of the propeller
and air—induction system.

Considersble research has been conducted to determine the effect of
propeller operation snd propeller—spinner—juncture configuration on the
internal—flow characteristics of an NACA D—type cowl and the effect of
the cowl on the propeller characteristics (refs. 1 to 6). Investigations
e&lso have been conducted to determine the internsl—flow characteristics
of a single—rotation NACA E—type cowl (refs. 7 and 8). However, the
mejor portion of these investigations has been carried out with regard
to single—rotation propellers of current design suitable for turbine—
propeller powerplant instellastions (refs. 1 to 4). In contrast, the
date avalleble in regerd to dual-rotation propellers ere limited prim—
arily to the effect of propeller operation and propeller—splnner—juncture
confi ation on the Internal—flow characteristics of the NACA D—type
cowl (refs. 5 and 6).

Because of the meny significant adventeges of the dval-rotation
propeller as compared to the single—rotation propeller (i.e., reduced
diameter, higher efficiency, sbsence of reaction torque, and less noise),
an investigation has been conducted in the Ames 12-—foot pressure wind
tunnel to determine the effect of both gix— and eight—-blade duel—rotation
propellers on the internal—flow characteristics of an NACA D—type cowl
end the effect of the cowl on the propeller charecteristics. One phsse
of the investigation, the determination of the aerodynemic character—
istics of the slx— and elght-blade propellers in the absence of the cowl,
has been reported in refersnce 9.
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In the phase of the Iinvestigetion reported herein, tests were made
with the cowling—spinner combination alone {(propeller removed) and with
the cowling~splnner combination in conJunction with both siz— end eight—
blade duel~rotation propellers.

NOTATION
a speed of sound?
B mumber of blades
b blade width
Cp power coefficient, g
Cmp thrust coefficient, —T—Z
pnzD .

cy a blade—section deslign 1ift coefficient

D propeller dlamster
H totael pressurel
Ha~p

ram-recovery retio

h maximmm thlckness of blade sectionm
Vo
g advance ratio, —
nD
M Mach number, E—
1 2
M _ tip Msch number, M / 1 + ?
n propeller rotational speed -

P powaer

1pos used herein, velues of a, H, p, V, and p appesring wlthout sub—
scripts refer to conditione in the wind—tummel air stream at a datum
velocity that has been corrected for blockage by the cowling but is uncor—
rected for wind—tunnel—wall constralnt on the propeller slipstream.
(See ref. 2.)
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static pressure?2 : - S -
propeller—tip radius

radius from center of rotation

thrust

local veloclty in propeller plane

eir-stream velocity?

equivalent free—air velocity (air—stream velocity corrected for
_tunnel-weall constralnt on the propeller slipstream)

inlet velocity ratie
propeller blede angle at 0.75 R

difference between the blade angles for the front and rear com—
ponents of the dual—rotation propellers

design propeller-blade—section angle
efficiency, 91 J
Cp

mess density of air?
Subscripts

ram-reocovery rake locatlon
front component of dual—-rotation propeller
rear component of duel—rotation propeller

apparent (applied to propeller characteristics when operating
ahead of the cowl) '

2g5ee footnote 1 on page 3.
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MODETL. AND APPARATUS

The model used in this investigation comsisted of an NACA 1-62.8-070
D—type cowl in combination with an NACA 1-46.5-085 spinner end
NACA 4—(5)(05)—037 siz— and eight-blade dual—rotation propellers. (See
refs. 10 and 11 for explanation of cowling—spinner and propeller desig—
nations, respectively.)} A photograph of the model mounted on the 1000—
horsepower dynamometer in the Ames 12—foot pressure wind tunnel is shown
in figure 1. A sketch of the general model errangement, showing the
principal model dimensions, is shown in figure 2.

Design Conditions

The model investigated simmletes & propeller—cowling—spinner
combination for a turboprop installatlon having the following design
requirements:

Altitude, Pt « + « « 4 4 4 4 4 o 4 4 e 4 4 o o e . . . 235,000
Mach number (cruise) . . . « ¢ ¢ = ¢« « 2 « « + « « . . . 0.8
HOTSCDOWEY + v v v o« o o o o o « o o = o o o « o o« « « « 5600
Engine air flow, 1b/sec . . . . . &« « + =« ¢« =« =« « . . . . O
Propellier diameter, ft

Sizx-=blade Aual . . . . . « ¢ ¢+ 4+ ¢ ¢ 2 s « o = o = e« o 19

Eight-blade dual . . . ¢ v ¢ « « 2 o « « « « o « « « - . .18
Bdvance ratlo . . . . . . . 4 4 4 e 4 e e e e e e - . .k
Inlet velocity ratic . . . . . &« ¢+ &« &« ¢ ¢ ¢« ¢« ¢« « « » « . 0.5

Spinner—Cowling Combination

The NACA 1-62.8-070 D—type cowl and the NACA 1-46.5-085 spinner
were selected, on the besis of the design requiremsnts, in accordance
wlth the method of reference 10. The cowling selected was the same as
that described In reference 1, except that the dlameter of the model was
Increased to accommodste the larger dlameter spinner required to enclose
the dual—rotation propeller—hub assembly. An NACA l—series Inner liner
was Incorporated at the inmer 1ip, &s recommended in reference 10, to
delay the separstion of the air flow from the immer 11p et high inlet
veloclty ratios. Coordinates for the cowling—spipnner combination are
shown in teble I.
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Propellers and Propeller—Spinner Juncture

The NACA 4—(5)(05)—037 six— and eight-blede dual—rotation propellers
were those described in reference 9, The blade—form curves for the pro—
pellers ere shown in figure 3. Except for total solidity, the six—
and eight-blade dual—rotation propellers were identical.

The propeller—spinner jJunctures shown in figure 4 are of the platform
type, identical to those recommended in reference 5 and used with the
NACA 1-46.5-085 spinner reported in reference 9. A sketch and the coor—
dinstes of the pletform are shown in figure 5. The surfaces of the plat—
form and propeller blade that bound the gep were formed by roteting the
surface element defined by the platform coordinates, tabulated in figure 5,
about the exis of the propeller blade in order that the gap hetween the
platform and the blade remain unchanged as the blade angle is varied. The
platforms were set to allne with the propeller bhlade sections when the
blage angle of the front component of the dual—-rotation propeller was set
at 65°.

1000-Horsepowey Dynamometer

The 1000-horsepower dynemometer used for this Investlgatlion was the
dynamometer described in detail in reference 11, modified for use in
testing dual—rotation propellers by the installation of & gearbox within
the dynemometer housing end & torquemeter on each of two concentric pro-
peller drive shafts as described i1n reference 9. These two torquemeters
were similar in design and operatlon to the torquemeter described in
reference 11 but bad one half the capacity and twlce the sensitivity.

Instrumentation

The instrumentation of the model wes identical to that described in
reference 1 and consisted of four shielded total—pressure rekes and two
statlc—pressure rakes. ZBach rake was composed of elight tubes disposed
radially acrogs the duct in such = manner thet each total—pressure tube
was in the center of an aree equal tc one thirty—second of the total duct
area., Celibration of these total—pressure rakes 1ndicated thet the error
in the measured impect pressure was probably less than 1.0 percent at
angles of attack up to %0° Pfor Mach numbers up to 0.85. No attempt was
made to callbrate the static—pressure rakes as the measgured static
pressures were consldered to be within the sccuracy required for the
celculations of inlet veloclty ratio.

The survey rake used to determine the local velocities in the pro—
reller plane comsisted of 2k static—pressure tubes at the rediil listed

1n table II.
L.
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TESTS AND REDUCTION OF DATA

Tests

In the investigation reported herein, tests were mede with the
cowling—spinner conmbinstion alone (propeller removed) and with the
cowling—spinner combinabtion in conjunction wilth bobth six— and elght—
blade dual—rotetion propellers. With the propeller removed, measurements
were made of the pressure recoveries &t the cowl inlet snd the veloctties
in the plane of each componsent of the propeller et Inlet weloclty ratlos
from 0,27 to 1.09 and Por Mach nunbers from 0.30 to 0.8%., With the
propeller installed and operating, measurements were made of the pressure

recovery &t the cowl Inlet and the thrust, torque, and robabtionel speed

of both dusl-rotetion propellers for blade angles from 40° to 70°, Mach
numbers from 0.30 to 0.8%, and inlet velocity ratios from 0.27 to 1.08,
as listed in table III.

For 21l propeller testis, the dilfference between the front and rear
propeller blade angles (Bp—BRr) was 0.8° (design A8).

Surveys of the velocity distributions in the plane of the propeller,
with the propeller removed, were made for the single—rotation spimmer—
cowling combination (NACA 1-46.5-047 spinner, NACA 1-62.8-070 D—type cowl)
reported 1n reference 1.

All tests of the dusl—rotation propeller—spinner—cowling combination
were made with the model at an angle of attack of 0° and at a Reynolds
number of 1.0 million per foot (1.3 million based on the maximum cowl
diameter). The velocity surveys near the single—rotation spinner—~cowling
combination were made at a Reynolds number of 1.8 million, based on the
meximum cowl diameter.

Mach Number

The Mach numbers given in this report are the average Mach nunbers
over the disc area of the propeller, determined by wvelocity surveys in
the presence of the dynamometer bedy with the cowl removed, as reported
in reference 11. The Mach nunber (and the corresponding dynamic pressure)
was corrected for the wind—btunmel blockage due toc the cowl by the method
of reference 12, but in no case dld this correctlon exceed 1 percent.
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Tunnel-Well Correctlons

The elr-stream velocity (and, consequently, propeller advance ratio
and efficiency) wes corrected for the wind—tumnel-wall constraint on the
propeller slipstream by the msthod of reference 13, For Mach numbers of
0.30 and ebove, at all of the test blade engles, thls correctlon dld not
exceed 2 percent and wes less than 4 percemt et a Mach number of 0.13.

Flow Surveys

The inlet veloclty ratio, calculated in accordance with the method
of reference 1, can be readily converted to mass—flow ratlo by use of
figure 4 of reference 1h.

The ram-recovery rabtlo presented as a function of radisl location
in the duct i1s the srithmetic average of the recoveries from the four
total-pressure tubes st each of the elght radiel locabtions. All other
valuss of ram—recovery ratio were computed from an arlthmetlc average of
the readings from all 32 tobtal—pressure tubes, which 1s equivalent to an
ares~welghted average.

The local wvelocities in the propeller plane were corrected for the
reke calibration and for the redial veloclty gradiert 1n the tunnel
(ref., 11) due to the influence of the dynamometer body. However, no
attempt was made to correct the statlic—pressure reedings near the surface
of the spinner for flow angulerity, and, as a result, the velues of local
veloclty presented herein for the low Inlet velocity ratlios mey be
somewhat in error.

Thrust and Torque

The thrust, torgue, and rotetionsl speed of the propellers were
measured in a manner similer to that reported In refersnce 1ll. The
thrust, as used herein, 1s the algebrailc difference between the longi—
tudinel force produced by the propeller—epinner conbinstlon operating in
the presence of the cowl and the longitudinal force produced by the sploner
alone (also in the presence of the cowl) at the same alr veloclty, density,
and inlet velocity ratlo. The method of determining the propeller thrust
is discussed in detail 1In references 2 and 11, The total torgue presented
for the dual—rotetlon propellers is the sum of the torgues measured for
the front end resr components of the propeller.

Analysis of the accuracy of the separste measurements of thrust,
torque, and air-stream velocity, as In reference 11, indicabes that errors

In the propeller efficlencies reported herein are probably less than 2
percent. "SR
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RESULTS AND DISCUSSION

The results of this investigation &re presented in figures 6 through
2k, An index of these figures 1s presented in teble ITT and glves the
model configuration and the rangs of the varisbles for each flgure.
Additionel veluss of the velocity ratios in the plane of the front end
reayr components of the dual—rotation propeller snd the single-rotation
propeller, with the propelliers removed, are ta2bulated in table TIT.

Internal-Flow Cheracteristics

Spinner—cowling combination with propeller removed.— Examination of
the ram—recovery ratios presented in figure 6 for the NACA 1-62.8-070
D—type cowl in combination with an NACA 1-46.5-085 dusl-rotation spinner
indicates that the losses 1n recovery were s result of the boundary—lsyer
build—up on the spinner.

The comparilison In figure 7 of the averages of these dsta with com~
perable date from reference 1, for & similerly designeted cowling with
an NACA 1-46.5-0L7 spinner, shows that the recoveries obtained with the
long (—085) spinner wers lower for all test inlet velocity ratios (1.5
percent lower at the respective design conditions: M = 0.80, V. /¥ = 0.50
for the —085 spilnner, and M = 0.80, V1/¥ = 0.42 for the ~O47 spinner).
Flgure 7 also shows that, because of the Increase In boundery—layer
thickness for a constent inlet velocity ratio due to the longer —085
spinner (13.22 inches as compared to 6.58 inches for the —O47 spilnner),
the inlet veloclty retio required to avold excesslve losses in the duct
was higher for the —085 spinner than for the —OLT spinner (0.51 as com—
pared to 0.45). A further comparison in figure 7 of the present date with
those for & model of the same geometric proportions (reported in ref. 5)
shows relatively good agreement (less than l—percent dlfference in recovery
et the design condition), except at inlet velocity ratios greater than 0.8.
In regard to the date from reference 5, it mey be noted that in that
reference the high recoveries at inlet velocity ratios greater than 0.8
wers associated with e condition of extensive leminar flow over the
sploner. Differences in the spimner surface conditions between the model
of reference 5 and the model reported herein (the spinner of reference 5
hed & smooth, contimucus, painted surface, whereas the splnner of the
present investigetion bhad machined surfaces end a dliscontinulty at the
gap between the front end rear components) may account for the differences
in recovery at the high inlet velocity ratios. Tt should also be noted
thet there were differences In the totel—pressure—tube instrumsntetion
and the locatlon of the survey station between the two models. The model
reported in reference 5 had one rake at the top vertical center line, 6

SEEITERTTAD
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percent of the cowl diamster behind the leading edge of the cowl as com—
pared to the present model having four rakes 90° apart, 18 percent of the
cowl dlameter behind the leading edge of the cowl,

The ram-recovery ratios for the present model were greater than 0.96
at inlet velocity ratios greater than 0.51 and were not affected by com—
preossibility within the range of Mach numbers covered in this investigation
(fig. 7). Tt can be seen from figure 6, however, that increasing the
inlet veloclty ratlo to values greater than 0.50 resulted in a decrease in
the recovery near the outer surfece of the duct.

Spinner—cowling conmbination with propeller operating.— Examination of
the deta presented in figures O to 12 indicates that with the addition of
the duel—rotation propeller to the spimner-cowling combinetion, the recov—
eries behind the operating propeller were affected not only by the spinner
boundary leyer, as was the case with the propeller removed, but alsc by
the engle of attack (loading) of the pletform and inner portions of the
propeller blade, the sir flow through the gep between the platform and
the propeller blade, end other propeller interference effects.

Analysis of the dats in figures 8 to 12 indicates that for a constant
inlet veloclty ratio, operation of the propeller at combinations of blade
angles, rotational speeds, and forward speeds that increased the angle of
attack (and thus the loeding) of the platform and the inner portion of the
blede generelly resulted in increased recoverlies dvue to the pumping action
of the pletform and inner portions of the bledes. As can be seen from
figures 8 and 9 for the low Mach numbers, recoveries in excess of 1.0 were
obtained when the propellers were operated at blade angles up to 60° and
at high rotational speeds. For these operating conditicns, 1t 1is apparent
that the pumping action of the platform snd immer portions of the blade
added sufficlent energy to the elr stream to overcome the energy losses
due to the spinnsr boyndary layer. A further enalysis of the data in
figures 8(a) and 9(a) indicates that et blade engles of 40° and 50°
the large effect of rotational speed on the pressure recoverles results
from the fact that the angle of attack of the inner portions of the blade
varied over a wide range (e.g., fora By = 40°, J = 1.1 tc 2.0, end
r = 4 inches the change in angle of attack was of the order of 129),

Also at these conditlons of operation, the difference in the angle of
attack of the platform and inner blade sectlons is quite large and, as
can be seen from figures 11(a) and (b) for the high inlet velocity ratios,
this difference in angle of attack (loading) plus the air flow through
the Juncture gap resulted in a relatively umeven distribution of recovery
radially scross the duct. At a propeller blade angle of 40° and for the
advance ratios presented in figures 11(z) end (b), the platform was
operating at & positive angle of attack and producing thrust; whereas the
inner blade sectlions were operating near zero sngle of attack. At the
low inlet velocity ratios, the platform 4id rot impart sufficlent energy
to the alr gtream to overcome the energy losses due to the spinner
boundary leyer.
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Although decreasing the inlet velocity ratio at a constant Mach
number, blade angle, and rotational speed also increased the angle of
attack of the platform and imnmsr portions of the blade, it is apparent
from figures 8 to 12 that for & given decrease in inlet veloclty ratio,
the losses in energy due to the increase in splunnsr boundary—layer
thickness were greater than the increase in energy imparted to the air
stream by the change in angle of attack of the platform and lnner blade
sections, resulting in an over-all decrease in recovery with decreasing
inlet wvelocity ratio.

The effect of Mach nurmber on the pressure recoveries at the inlet
is readily appearent 1n figure 12, in which it can be seen that for a
constant blade angle, inlet veloclty ratlo, and sdvance retlo, an incresse

in Mach number cra'na-r-xa_'l'lv regulted in a8 decresse in recovery; due to the

compress1'bility effects on the platform and inner portions of the blades.
However, it can also be seen from figure 12 thet, for & blede angle of
60°, the inlet velocity ratio =t which excessive losses occurred at the
cowl inlet was lower at high Mach nunbers then that st low Mach numbers.

The recovery data presented in figure 13 show that the addition of
either the gix—~ or eight-blade dumsl—rotation propellers to the basic
cowling—spinner combination resulted in an apprecliable decrease in
recovery due to the interference effects of the propeliers. However,
figure 13 (and also figs. 8, 9, and 11) shows that for a given set of
operating conditions, the recoverles faor the slx—blads propeller were
higher for all the test conditions then thoge for the elght-blade pro—
peller. This indicates that the effectiveness (relationship between
pumping action and interference effects) of the platform and inner
portions of the blades was highser for the six-blade propeller than for
the eight—blade propeller.

Seaeling the gap between the pletform and propellsr blade, for ths
blade angle at which the propeller was alined with the pletform (figs.
10 and 1k), resulted in higher recoveries at the cowl inlet throughout
the test range of inlet weloclty ratios than those for operation of the
propeller with the gap open. This effect 1s similar to that reported
in reference 6 and can be attributed to eliminating the flow through
the gap. Although sealing the platform gap of the dual—-rotation pro—
peller of this report resulted in a relatively large ilncrease in recovery,
the effect of seallng the gap of the single—rotation propeller reported
in reference 1, for a comparable condition, was small.

The comparison presented in figure 14 also shows that the recoveries
at the respective design advance ratios and nesr design blade
angles were generelly lower for the dual—rotation propeller—spinner—
cowling combinetion of thils report than those for the single—rotation
propeller—spinner—cowling combinstion reported in reference 1 or the
single—rotetion E—type cowl reported in reference 8. However, at high
values of inlet velocity ratio the E~type c¢owl operated as a turbine,

GEEERTTAY,
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absorbing energy from the air streem, with consequent losses in recovery .
as compared with those for the cowl with the dusl—rotation propellers.
These lower recoveries obtained for the dusl—rotation proveller-spinner—
cowling combination resulted from the lncreassed boundary-layer thickmess
due to the longer —085 dqual—rotation spinner and the larger interference
effects of six— and eight-blede propellers es compared to the single—
rotation propeller—spinner—cowling combination or the single—rotation
E—type cowl.

Propeller Charecteristics

In accord with the discussion in reference 15, the characteristics
of both the sgix~ and eight—blade dual—-rotation propellers operating in
the presence of the cowl are presented as epparent values (figs. 16
to 23) since the determination of propulsive thrust was precluded by the
fact that 1t was ilmpractical, with the dynamometer arrangement used in
the present investigetion, to msasure the increase in drag of the cowl
and dynamometer parts within the influence of the propeller slipsiream.
Surveys of the velocities in the plenes of both the front and rear com—
ponents of the duel-xrotetion propeller with the propeller removed
(teble IT and fig. 15) show that the cowl hed a considerable effect on
these velocities, especially in the plane of the rear component where
et low values of inlet veloclity raetio the local velocities neer the
surface of the spinner were reduced mearly 30 percent. As would be
expected with these reduced veloclties, the thrust and power coefficlents
for the dusl-rotetlon propeller operating shead of the cowl were greater
than those for the 1solated propeller-spinner comblnation of reference 9
when operating at the game advance ratio, blade angle, and Mach number,
es shown in figure 20.

r

Power coefficients.— The power coeffliclents presented in flgures
18 and 19, show that for AB = 0.8, the front and rear components of
the dual—rotation propellsrs dld not absorb equal power when operating
at the advance ratio for maximum efficiency. On the basis of the data in
reference 9, 1t would be expected that, had the propellers been operated
gt the AB for equael power absorption by both components of the dual—
rotation propeller at the advance retio for meximm efficiency, the
efficiencles would probably have been of the order of 2 percent higher,

Effects of solidity and of sealing the Juncture gap.— The comperison
in figure 21 of the characterlstlcs of the six— and elght-blade dual—
rotation propellers, on the basils of equasl total activity factor, shows
good egreement between the characteristics of the two propellers. *

As would be expected from the data reported in references 2 and 9,
operation of the propeller with the geps between the platforms and N
propeller blades sealed resulted in no s ificant change In the pro—
veller characteristics (fig. 28" 1EF

SANEIDENTIST
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Maximum efficiency.— As can be seen from figure 23, the meximum
efficiencies obtalned for the duel—rotation propellers in the presence
of the cowl were higher st all comparable Mach nunbers and blede angles
than those for the isoleted propeller—spinner combination. At a blade
angle of 65° (near design bleade angle) and a Mach number of 0.80 (design
Mach number), the efficlencies of the six— and eight—blade dual—roctation
propellers with the cowl were T5 and 76 percent, as compared to 63 and 61
percent for the isoleted condition. In comperison, the efficilencles of
the four—blade single—rotation gropeller, reported in references 2 and 11,
at the design blade angle of 60% and the design Mach number of 0.80 were
78 and 59 percent Por the cowl—on and —off conditions, respectively. It
should be emphasized that the chenges in meximum efficiency dus to the
addition of the cowl for these propellers for the design, or near design,
conditions apply only thereto; that ig, at a given Mach number the change
in efficiency would not nscessarily be the same for some other blads
engle. It may be noted that on the basis of the velocity ratlos presented
in figure 15 snd table IT, the interference effects of the cowl on the
maximimm efficiency of the dual—rotation propeller would be expected Lo be
somewhat less than that on the single~rotation propeller, due to the fact
that the front component of the dual—rotation propeller was little affec—
ted by the flow field about the cowl (with near free—stream velocity
over the entire blade); whereas the interference of the cowl on the single—
rotation propeller asnd the rear component of ths dusl—rotation propeller
was quite pronounced over the lnner portion of the blades and of approz—
imately the same magnitude. However, due to geometric differences between
the single— and dual—rotation propellers which preclude the citing of
comparisons on the basis of equal blede angle, the relative interference
effects of the cowl on the meximum efficiencies of these propellers
cannot be determined from the data available.

The meximum efficiencies for the cowl-on conditions reported herein
and in reference 2 are presented for an inlet velocity ratio of 0.80.
However, examination of the propeller cherscteristics in figures 16 and
17 shows that the effect of Inlet velocity retio on the thrust and power
coafficients and on the propeller efficiency wes small. Similarly, resulis
presented in refersnce 2 show that for the four-blade single—rotation
propellsr, the effect of inlet veloclty ratio on the propeller character—
istics was also small.

CONCIUDING REMARKS
The following remarks mey be made regarding the results of the sub—
Ject investigetion.
With the propeller removed, the ramrecovery ratios for the spinner—

cowling combination were greater than 0.96 at inlet velocity ratlos sbove
0.51 and were not affected by compressibility in the test renge of Mach

e 2T
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propeller at the advance ratio for maximmm efficiency resulted in lower
pressure recoverles then those for the spinner—cowling combination with
the propeller removed. However, for certain off—design condiltions for
the propellers when the platforms and lwmmer blade sections were highly
loaded, operation of the propellers lmproved the pressure recoveries
and for certeln conditlions gave pressure recoveries grester than 1.0.
Also, pressure recoveries for the six-blade propeller—spinner—cowling
conbination were higher then those for the cowl with the eight-blade
propeller, although the recoveries for the cowl with either dusl—rotation
propeller were lower than those for a simllar cowl with a& four—blade
single—rotation propeller,.

The pressure recoveries for the dual—-rotation propeller—splnner—
cowling conmbination with ths gap between the platform and propeller
blade sealed (propeller alined with platform) were higher than those for
the same combination with the gap cpen.

The locel velocitlies in the plane of the rear component of the dusl—
rotation propeller were consliderebly reduced by the presence of the cowl
(nearly 30 percent lower than free—stream velocity near the surface of
the spinner for low inlet veloclty ratios), whereas the velocities in
the plane of the front component were nesrly free—stream.

At ths design Mach number of 0.80, inlet velocity ratio of 0.50,
advence ratio of 4.2, and the near design blade engle of 65°, the max—
imum efficlencles obtainsd for the six— and elght-blade dual—rotation
propellers with the cowl were 75 and 76 percent, respectively.

The meximum efficlencles of the six— and eight-blade dusl—rotatlon
propellers when operating in the presence of the cowl were higher, for
ell compareble conditions, than those for the isolated dusl—rotation
propeller—spinner combinatlions.

The effect of inlet velocity ratio on the propeller characteristics
was small.

Ameg Aeronautical Leboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 22, 195L
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TARIE I. — COWLING—SPINNER COORDIFNATES
[Coordinates in inches]

17

Distance NACA Distence NACA Distance NACA
from 1-62.8-070 from l-geries from 1-46.5-085
leading cowl, leeding inner leading | spinner,
edge of radius, edge of 1ip, edge of radius,
cowl, cowl, radius, spinner,
Xe Tre xq ri Xq Tg
o k.955 o k.955 0 0
.022 5,001 .005 k.939 .053 .2ho
Ok 5.142 .009 k932 .106 .337
.065 5.184 .019 h.o21 .198 460
.109 5.248 .028 4,013 .331 .599
.218 5.371 .037 k.05 163 .T21
.327 5.472 -Oob7 k.899 .595 .830
436 5.561 .070 L, 884 .T793 97T
51128 5.643 .093 4.873 1.058 1.151
871 5.853 37 L,863 1.454 1.380
1.198 6.032 .1k0 4,854 1.851 1.57¢9
1.52kL 6.188 187 4,838 2,248 1.751
1.851 6.321 .234 4.826 2.6LL 1.906
2.178 6.443 .280 L, 816 3.173 2.095
2,613 6.590 .327 %.808 3.702 2,267
3.049 6.72h .37k .803 231 2,hoh
3.484 6.847 2o L.800 L 760 2.570
3.920 6.961 46T L.799 5.289 2,70k
k. 356 T7.065 - - 5.818 2.827
k.91 7.161 - - - 6.347 2,939
5.227 7.249 - - T.140 3.091
5.880 T7.367 - - = 8.198 3.265
6.751 7.503 -— -- 9.255 3.398
7.840 7.630 - - 10.313 3.501
8.711 T-703 - - - 11.371 3.571
9.800 T.761 - - - 12.h29 3.612
10.889 T.778 - - = 13.222 3.617
S xi
Xs /N ﬁ N
- — L
+ 1 ri rc
I's _ \ Y -
4 ~B



TABIE II.— LOCAL VELOCITY RATIO, UV
(a) WACA 1~46.5-085 dusl-rotation spinner, front plane of rotation
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TABIE II.— LOCAL VELOCITY RATIO, U/V — Contimued
(b) NACA 1-46.5-085 dusl-rotetion spinner, resr plane of rotation
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TABLIE II.— LOCAL VELOCITY RATIO
(c) NACA 1-46.5~-047 single-rotation spinmer
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w1 Nunber Mach Propellsr Irlet velocity
giwe Plot Of blades, mumber, |blade angle, ratio,
number B M ﬁF, deg Vi/v
Recovary data
6 (E:-p) /(B=p) vs. » (a) 0.30 to 0.84 - 0.28 to 1.09
T (H:—p)}/(E—p) ve. V1 /¥ (=) 0.30 to 0.8% - 0.28 to 1.09
8 (H:—) /(E») vs. T 6 0.30 to 0.80 o to 70 0.28 to 1.08
9 8 0.30 0 0.8% | hO to 70 | 0.27 %o 1.03
b0 8 0.80 65 0.31 to 0.96
11 (E1—) /(B-p) ve. T 6,8 0.30 to 0.80 40 to 70 0.27 to 1.05
12 (H1~p) /(B—p) v8. V1 /¥ 6 0.30 to 0.80 40 to TO 0.28 to 1.08
c 8 0.30 to 0.84 %0 to TO 0.27 to 1.03
13 {a),6,8 0.30 to 0.80 40 to 7O 0.28 to 1.09
b,d1) 4,6,8 0.80 (e) 0.22 to 0.99
Velooclty surveys
35 UN vs. r (a) 0.30 o 0.8% - 0.29 to 1.09
Propeller charscteristics
16 Cp,s Cp,s Mas My vs. J 6 0.30 to 0.80 | 40 to 70 | 0.28 to0 1.08
17 CT;’ Cp,s Tgs My V8. T 8’ 0.13 to 0.8% | 40 to 70 | 0.27 to 1.03
18 CPAF’ cPa. vs. J € 0.30 %0 0.80 40 %o 70 0.28 to 1.08
R
19 CPaF’ cP‘B vs. J 8 0.13 to 0.84 ko to 7O 0.27 to 1.03
&20 Cp,s> Cps Cp,s Cps Nas 0 Va. J 6 0.80 65 0.6%
By Cg,s Cps Tg V8. T 6,8  [0.30 t0 0.80 | 40 to 65 | 0.61 to 0.65
P22 fop, Cp s o V8. T 8 0.80 65 0.31 to 0.96
€123 Iy , Mgy V8. M 6,8 0.13 to 0.90 | %0 to 70 0.80

Propeller removed.

berrect of sealing the Juncture gap.
CComparison of six— and elght—blade—propeller and propeller—removed recovery data.
omparison of four-blade single—rotation, sixr— end eight—blades dual-rotetion, and single—
rotation NACA E-type—cawl recovery data.
®Respective mear design blade angles.
fVeloc:!.'l'.y surveys In plane of front and rear camponents of the dual-srotation propelier and in
the plane of a single—rotation propeller; propellers removed.

data.)

W

ECamperison of six-biade dusl—rotation—propeller characteristics with cowl on and off.
omparison of six-blade end eight~blade dusl—rotation—ypropsller characteristics; cowl om.
icompu'iaon of eight—blade dual-rotation—propeller characteristics with cowl on and off.

(See table IT for tabulated
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NACA RM AS5hJop SCMEILENTTAD 3 23

A-17903
Figure 1.— The model mounted on the 1000-horsepower propeller dynamometer
in the Ames 12—Ffoot pressure wind tunnel.

( NACA 4-(5}05)-037 Propellers
(developed plan form)

2400 Note: Dimensions shown in inches.
1300 1089 (length of
NACA [-62.8-070 Cowl)

—10.62-

i
=773
52 2 St D liding | 778

throttle
00l | A t
s \ {280\, :]624.80
7 I :"'0‘03 &‘ 1 i Model center line
ZNACA 1-465-085 Spinner>, “—Rarn-recovery rake location
X .

\—Platform juncture

Figure 2.— Model srrangesment.
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Design blade angle, B4 , deg
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249

16

72
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Blade section design lift coefficient, Cry

08

Figure 3.— Blade—form curves for the NACA 4—{5)(05)-037 six— and eight—

blade dusl—rotatlion propellers.
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A-17902

Figure 4.~ Close—up of model showlng pletform propeller—spinner Junctures,

—\ N\ A\ N
) X .
° a0/} ? %
1p

Platform coordinates
Frant Reear
P ¥p *p ¥p
3.482 2.890 8.582 3.665
3.720 2,924 8.820 5.635
. 3.220 2.992 9,220 3.760
4,320 3167 9,520 3,825
4,720 3.220 10,020 3.860
6.520 3.220 1l.420 3.860
6.920 3.317 11.820 3.890
74320 3.411 i2,220 3.850
T.706 3.502 12,808 4,040

Alt dimensions in inches

Platforms shown in developed plan form

Platforms aline with blades when Bp=65°
and BR =64.2°

Figure 5.— Pletform srrangement and coordinates.
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(H,-p)/(H-p)

Ram-recovery ratio,
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Figure 6.— The variation of the average ram-recovery ratio across the duct; propeller removed,
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NACA 1-62.8-070 D-type cow! in combination with

—— (1) An NACA 1-46.5-085 dual-rotation spinner
----- (2) An NACA |1-46.5-085 dual-rotation spinner

(ref. 5 )
— - (3) An NACA 1-46.5-047 single-rotation spinner
(ref. | )

Kele)
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.88 l-. o .40
o 1 & 60
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S I IF A 70
= 8T v .80
5 [ > 84
3 | ﬁ‘
§ .80
1
£
(=)
T 76

|
72 [
=2 4 6 .8 1.0 .2

Inlet velocity ratio, W/V

Figure T.— The effect of 1lnlet wvelocity retio on the aversge rem—recovery
ratio; propeller removed.
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Ram-recovery ratic, (H,-p)/{H-p)

04

v/v

(X0.0)

WV WV

96

—-o-028] | [ |-0-0z28 —0~-029 -0-0.30
~— 40 [ J--m 40 e 4 e A
— s | 53 —- 53 —- 54
T —- 63 — 6l —e- B4 —_ .gg
. —e 105 [ 98 —- 97 ——
N .05

-\ ™~ et by oS il et
%\ - \\\ --"'--. ” ~ g = = —_1 = I —— - -
92 \\\ ” h‘\ = P—t I et --.. e :'= -
\\‘ \ ity - - \-:___. [ A e ,___-_—- - _:- —
88 soh —t 1
00, 8:0 I~
( ¢ - UGN N [
84 _.QQ:P-. — __.—"'--- ATT™ —---'""--__‘——;?’ T 1=q4-=-b=F =|= +
wv | |1 N P s
80 -—D—O.g-g BF=60°
—- 83 Be=60° Br65° Br7o°

.76

Q
o]
G

T2

68

20 24 28 32 36 40

() M=0.60; B =6

28 32 36 40 44 48 52 56 60 64

Advance ratio, J

Figure 8.— Concluded,

(d) M=0.80; B =6

ot

geLhay W yOvN




Ram-recovery ratio, {H~-p)/(H-p)
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Figure 9.~ The effect of advance ratioc om the average ram-recovery ratio; propeller operating. “
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Ram-~-recovery ratio, (H,-p)/(H-p)

926

.92

.88

.84

80

76

T2

04

Yeole)

96

92

88

84

.80

.76

72

.68

WACA RM Ashge2

Advance ratio, J
(&) M=0.70; B=28

Flgure 9.— Continued.
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Ram-recovery ratio, (H-p)/(H~p)
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Ram-recovery ratio, (Hr~p)/(H-p)
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Ram-recovery ratio, {H~p)/{H-p)
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Ram-recovery ratio, (H,~p)/(H-p)
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Ram-recovery ratio, (H,-p)/(H-p)
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